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CRITICAL STRESS OF THIN-WAL).ED CYLINDERS IN TORSION

By S. B. Batdorf, Manuel Stein, and Murry Schi;dcrout
SUMMARY

A theoretical solution is given for the critical stress of
thin-walled cylinders loaded in torsion. The results are presented
in terms of a few simple formulas and curves which are applicable
to & wide range of cylinder dimensions from very short cylinders of
large radius to long cylinders of small radius. Theorstical
results are found to be in somewhat. better asgreement with experi-—.
mental results than previous theoretical work for the same range
of cylinder dimensions.

INTRODUCTION

For most practical purposes the solution to the problem of
the buckling of cylinders in torsion was given by Donnell in an
importent contribution to shell theory published in 1933 (reference 1).
The present paper, which gives a solution to"the game problem,
has two main obJectives: first, to present a theoretical soclution
of somewhet improved accuracy; second, to help complete -a series
of papers treating the buckling strength of curved gheet from a
unified viewpoint based on a method of analysis essentially
equivalent. to that of Donnell but considersbly simpler. (See,
for example, references 2 and 3.)

The method of solution in the preseat 'paper is that ‘developed
in reference 3. The steps in the theoreticael computations of the
critical stress are contained in the appendix. The results are
given in the form of nondimensional curves and simple approximate
formulas which follow these curves closely in the usual range of
cylinder dimenslons.
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SYMBOLS

Jsm,n integers
P arbltrery constant
r redius of cylinder _
t thicknesgs of cylinder wall
u exlal component of displacement; pogitive in x—direction
v circumferential component of displacement poéitive in

. y~direction -
W radial component of displacement; positive outward
x axlial coordinate of cylinder
y circumferentlal coordinate of cylinder
D flexural stiffness of plate per unit length (: Et3

: 12(1 ~ p?)

B Youngt!s modulus
L length of cylindex

Q -  mathematical operator defined in appendix

2 2 . B
Z curvature parsmeter (3&€;f1 - qr_ (%) ilﬁl - u2:>

ans bp coefflcients of deflection functions

kg "_ critical shear-stress coefficlent appearing in
2
formule Ty = kg Z2

My = & (02 + p2)2 4 1272k
Se (2 + 2)2

' Vm,Wﬁ deflection functions defined in appendix
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-1
A half wave length of buckles In circwnferéntial direction
i1 Poisgon's ratio

L critical shear stress I

b o

= P - P —
Y-
¥ inverse of y*, defined by v = w
RESULTS AND DISCUSSION

The critical shear stresses for cylinders are obtained from
the equation

2
_kE D

CI‘
12t

The values of kg for cylinders with either simply supporited or
clemped edges are given in the form of logarithmic plots in

" Pigure 1. The ordinate in this figure is the .critical -shear-
stress coefficient kg The abscissa 1s a curvature parameter Z
which ie given directly by the theory and involves the dimensions
of the cylinder and Poisson's ratio.

For very short cylinders the value of the shear-gtress coef-
ficient approaches the values for flat plates, 5.3% when the edges
are simply supported and 8.93 when the edges are clamped. As Z
increases kg also increases and the curves which defined kg
are given approximately 'by straight lines. For simply.supported
cylinders,

= 0.85 z3/lp

For cylinders with clamped odges, -

Iy = 0.93 23/
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The renge of valldity of these formulas is approximately

2
100<€ 2 < 10 £,
£2

For the case of long cylinders the curvese of figure 1 split
into a series of curves depending upon the radius—thickness ratio.
These cltirves, which correspond to buckling of the cy¥linder into
two circumferential waves (n = 2), depart from the straight lines

at approximetely 2 = 1032 or approximeteély %-:-3vﬁ% . Because
t LR » . .. . - -

the critical shear stress of a long cylinder is almost
independent of end conditions, the curves for different values

of r/t apply both to cylinders with simply supported edges and
to cylinders with clamped edges. These curves are probably some-—
whet inaccurate, however, because one of the requirements for the
validity of the simplified equatlion of eguilibrium used is

that n2>> 1. A calculation for long cylinders made by Schwerin
end reported in reference 1 by Donnell suggests that all values
corresponding to the. curves given in the present paper for n = 2
are slightly high. - o

In figure 2 the results of the present papsr are compared with
those given by Domnell (reference 1) and Leggett (reference 4).
The present solution agrees ‘quite closely with that—of Donnell
except in the transition region between the horizontal part and
the sloping straight—line part of the curves. In this region the
present results ere appreciebly less than those of Donnell
(meximum deviationabout 17 percent) but are in c¢lose agreement with
Leggett's resulte, which are. limited to low values of Z.

In figure 3 the present solution and that of Donnell for the
critical sheer stress of simply supported ¢ylinders are compared
on the basis of agreement with test results obtained by a number
of investigetors.  (See referencesl, 5, 6, and T.) The curves
giving the present sclutlon ere appreciebly closer to the tesgt
points. More than 80 percent of the test points ere within 20 percent
of the values corregsponding to the theoretical curve for simply
supported cylinders given in the present paper, and all points
are within 35 percent of velues corresponding to the ourve. .

In figure 4 the present solution for criticel shear-stress’
coefficients of long cylinders which buckle into two half waves
ie given more fully than in figure. 1l and ls compared with test
results of references 1 and 8.
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The computed values from whichk the theoretical curves presented
in this paper were drawn ere given in tables 1 and 2.

CONCLUDING REMARKS

A theorstical solubtion is given for the buckling stress of
thin-walled cylinders loaded in torsion. The results are appliceble
to & wide range of cylinder dimensione from very short cylinders
of large radius to very long cylinders of smell redius. The
theoreticael results are found to be in scmewhat better agreement with
experimental results than previous theoretical work for the same
range of cylinder dimensions. .

Lengley Memoriel Aeronauticel ILaboratory
National Advisory Commititee for Asronautics
Langley Field, Va., March 20, 1947
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APPEEDIX
THEORETICAL, SOLULION

The critical shesr stress at which buckling occurs in a
cylindrical shell mey bs cbtained by solving the eguation of
equilibrium,

Equation of equilibrium.~ The equation of squilibrium for
a slightly buckled cylindrical shell under shear is (reference 3)

- 33 :
pVh + ;—V ) xZ * 2""c::'té'x"ya"y: 0 S¢S

where x is the exial direction and y the circunferentisal
direction. The following figure shows the coordinate system
uged in the analysis:

/ S
v//,

\\
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Dividing &hrough equation (1) by D gives

\-).‘. al‘"W 2k TEE 821-7 (2)

by 4
v Ll" ot ® Paxdy

where the dimensionless paremeters 2 and kg -are defined by

end

The equation of equilibrium may be represented by
Qv =0 (3)
where Q 1is defined by

Q=v*+ mzv-“% oy I2 =l
Ll" 3x 12 3x By

Method of solution.— The equation of equilibrium may be solved

by using the Galerkin method as outlined in reference 9. In
applying this method, equation (3) is solved by expressing w in
terms of an arbltrary number of functions (Vg, Vis . . . V’J, Vo
Wi, . . ., Wj) that need not satisfy the equation but do satisfy
the boundary conditions on w; thus lebt

' é_ J .
W= > apWy+ > bpWy (%)
m=0 m=0
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The coefficient &y and by are then determined by the equations

12x 0L ‘
J / anwdxdy’:-o

o Lo

.

2V 1L
L/ WnQWdId,Vﬂo

0 U0

where
n=0,1,2, « ¢« .5 J

The solutions given in the present peper satisfy the following
condltions at the ends. of the cylinder:

For cylinders of short and medium length with simply supported
edges w.= -wg =v=0 and u is unrestrained. For ¢ylinders of
ox *

short and medium length with clemped edges w = gg =u=0 and v ie
unrestrained. For long cylinders w = 0. (See references 2 and 3.)

Solution for Cylinders of Short and Medium Length

Simply supported edges.— A deflection function for simply
supported edges may be taken as the infinite series

o ' =R .
w = gin &L ap 8in IMX 4 cos XL ZE; by sin IZE (6)
A . L ) A L

m=1 m=1

vhere A 18 the half wave length of the buckles in the cir-—
cumferential direction. Equation (6) is equivalent to equation (4)

ir
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Vn = sin Ei‘i gin D4X

L
/ - (7)
W. = cos &L gin BIX .

n P L ]

Substitution of expressions (6) and (7) into equations (5) and
integration over the limits indlcated give

roo . & )
o w2
an (n2 + BE)E + ’ 127Z=n > - 8ksﬂ> -bm __imi-‘__ =0
]
P wt(n® + p=)°< | T = ne - me
> (8)
r > =3
H \
b, | (o + B2)2 &+ 1e7%nt - + BicgP ) am == -0
@2 + g2)2 n /L  n2-m?
- - m=1
<
whers
=&
g A
n=1, 2, 3, _

apd miIn is odd. Equations (8) have a sclution if the following
determinant vanishes: . - _ .
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aq agl a3 &, a5 &g .. by by b3 by b5 bg ...
n= EJ;M]_ 0 0 0 o0 o .. 0o 2 o '1% 0 565-
n=2| 0 %:42 0 0 0 0 .. -8 o % o L o ..
=3l 0 0 gy 0 0 0 ... 0 —g o £ o g ..
n= 0o 0 o0 1—3;444 o o -% 0 -1;{?- 0 -29-9- o ...
=5 0 0 o0 o0 El;Ms o .. 0.2 o %Q 0 f%
=6 0 o0 o0 o0 o l%émé ...-:% 0 -?- o -8 o ..
n=l{ 0 -% 0 -il-% 0 -36-5- .. El;Ml © 0 0 0 0 ...
=2 £ o0 £ o 22 0 .. 0 :CJZMQ o 0 0 o0 ..
=3| 0 —g- 0 -172 o -% ee.. O 0O EJ-;M:S. 0 0 0 ...
n= % o # o -%Q 0 «.. 0 0 0 gl;Mh 0 0 ...
w5 0o 0 o ?-99- : o.-_{zg .. 0 0 0 O 1—{?45 o ..
n=6 5;65- 0 % o £ o ... 0 0o o 0o o E]‘;MG. .
where -
Mn-_-_’l_{(n2.+ p2)2 . __122%0" _
8p (a2 + §2)8 ]

By rearranging rows
into the product of
to each other., The
following squation:

and columns, the infinite determinant can be factored
two Infinite subdeterminents which are equivalent
critical stress may then be obtained from the

(9)
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1

2

3

N
=53
=6
n=1
n=2
n=3
n=k
n=>
n=6

The first approximation, obtained from the second-order determinant,
(11)

is given by



12 NACA TN No. 134k

The gecond epproximation, obtained from the third—order determinant,
is giveny by

kg? = 5\2MlMEM3 = (12)
15} a
A5/t <3>2M3

The third spproximation, obtalned from the fourth-order determinant,
is given hy .

3 8P - P (9P - @Pon - (]

+ MlMQM3M4 =0 ' S (13)

Each of these equations shows that for a selscted value of the -
curvature parameter 2Z +the critical buckling stress of a cylinder

depends on the wave length. Since a structure buckles at the lowest

stress at which instability can occur, kg is minimized with respect -
to the wave length by substituting vaelues of B into the equation

until the minimum value of kg can be obtained from a_plot of kg

against B. This procedure ls permissible when 8> 5% s thet is, .

wher the cylinder buckles into more than two circumferentisl waves.
For the limiting case of a cylinder buckling into two waves,

pgee the sectlon of the present appendix entitled "Solution for

a Lopg Cylinder" which follows.

Figure 5(a) shows the convergence of the determinant for cylinders
with simply surported edges.

Clamyed edgen.— A procedure similer to that used for cylinders
with simply supported edges may be followed for cylinders with
clamped edges. The deflection function used is the following
series: y

oo — —
= i
w = pin E;%[ ‘\/ am | CoS %E - cos8 LE—-‘-—L—E-)-EE .
£ . - H
=0 -
2 ~ - -
+ co8 %? :} by [eos Q%E ~ cos QE.:EEAE%J (%) -
m=0 :
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Bech term of this serles satisfies the condition on w at the edges.
The functions Vn and Wn are now defined as follows:

'7
Vn=sinﬂ cosy_@_cog.(.n_'*'_g.).ﬂ
A L L
%
(13)
Wn = Cco8 ﬂ-iz ‘kcos Ei.@ - cOo8 Qiig)—@:\

where

n= O_, _]-’ 2,‘ e o .

When the same operations as those carried out for the case
of simply esupported edges are performed, the following simultaneous
equations result: '

For n =0,
) o I
o : m2 fm + 2)2
ao(Mp + Mp) — agMp + ks Z bml' m2—lp+(m+2)2"l"
m==l:3:5 ’ '
For n=1,
= 5 2
o (M1 + Ma) — 8 + K Y by m? .
1(ML + M3) —agM3 + kg ) L@—L 2 -9

m=0,2,4

m+2)2 | _@+2)% | o
m+2)2%-1 (m+2)%-9
For n=2,3 4 ...,

e

_me

. [oo)
en(Mn + Mn+2) — enoMp — ap+oMns2 + kg bm[

l\/

i
o

_ me __(m+2)2 . (m + 2)% .\;0
2

me--(n+2)2 (n + 2)2 — n? (m+2)2—(n+2)
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where mt* n is odd,

For n =0,

b - ,- me (m + 2)2 0
ofMo+ Mp) =By kg > TR meoe-k |
m=1,3,5 -
For n =1,
o .
— 2 2 (m + 2)2
bl(Ml + M3) - b3M3 - kg ‘RL aml = - =
: . 2 2 _ 2 .
m=0,2,4 l_m 1 o 9 . (m + 2) !
o+ __.(gi-g).z.._. =0
(n+2)2% ~g_
For n=2, 3, &, . . .,
R 2~ o
bp(Mp + Myep) = bpooMp — bpuoMpee — kg i\-« am[mﬁ‘m 2 e I(ﬂn + 2)2
. n=0 - B
=_(m+2)2 (m +.2)2

=0 (16)

(m+2)2 —~n2 (m+2)2 < (n+2)2

-t

where mf_n is odd and

Cw[on s . 12228k ]
= nc + B + - -
' " g ( ) xH(n2 + p2)2

Lo H

The infinite determinant formed by these equations can be rearranged
80 88 to factor into the product of two determinants which are
equivalent to each other. The vanishing of one of these Aeterminents
leads to the following equation (limited for convenience to the
sixth arder):
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& bl an
n=0 ﬁ%(2M0+M2) f% - ﬁ%Mg
n=1 %% EE{M1+M3) - %%%
n=2 - ;: ' - %Zg Eﬁ(M2+M4)

b3

-8
105

1
T E3
1472
315

1
E;(M3+M5)
_héo

693
1
- ¥

kg

8y

0

32
35

1
g b

_ k160
693

9440
1287

(My,+Mg)

Y
k

b5
- 32
315

0

_ 1316
1155

- £

ghko
1287

8

The first approximation, obtailned from the second—order

determinant, 1s given by

k2 = (32) (25 + 2000y + 03)

(M5+M7)

15

=0 (17)

(18)

The gecond epproximstion, obtained from the third—order determinant,

is given by

2 _
ks =

(M + M3) | (Mg + Mp) (Mp + M) — MoP]

32

2
l5> (Mé + Mh) - éE énge + éég

15 105

jg (2My + M2)

(19)

The third approximatlon, obtained from the fourth-order determinant,

is given by



ot

15 315 105 105 315

;b (32 172 _ 353@_)2 _kSE[ l_’ﬂ@)e (2 + Mp) (M1 + M3) +(§§§)2 (¥ + Mp) (Mg + 15)

‘64 28 14
. (;0-3}2:(141 + 1) (M + 19,) + (ﬁf (i + 1) g+ ) 228 B2 300 3y

_ 6k 332 _ J0k 1472 _ 64 &
15 105 23 % %) =105 g5 M3(Ro F M) = Ig s Mlke + )

6 352 , 32 1472 r ) —] , ' |
T 2(105 105 15 315 )MEM?’} | BMo(Mp + My) + Moy [Ml(M3 + Mg) + M3”5J =0 (20)

— '
i}

These equaticns msy be solved in the same way as in the previous problem of

gimnly aummorted adooas . hy enbatitnting valiee of A into the asnationn untdl tha

BT VR A7 WL e

minimm value of kg Iis obtalned from a plot of B and corresponding valuee of kg.
The restriction that B > % spplies for cylinders with clemped edges as well as for

cylinders with slmply supported edges. Figure 5(b) shows the convergence of this

determinant .

HHET *ON NI VOWN _




NACA TN No. 13hk i7

Solution for a Long Cylinder

A long slender cylinder (Z > 10 i-é- will buckle into two
-waves in the elrcumfersntiel direction. IFf, in the previous
capes of cylindere with simply supported or clamped edges, the
half wave length in the circumfersntisl direction A 1is taken
as 11:::-/2, it is possible to find tho criticel stress of a long
slender cylinder with the corresponding edge conditions. This
method of solution is laborious, however, because determinants of
-high order must be employed to obtain solutions of reasonable
accuracy. The labor ig greatly reduced.by the use of the following
deflection function: _

g!)_ co{gg +L22m: + gg] (21)

W = a3« co8 (E.E-:-KP

where p + 1 is the phase difference of the circumferential waves
at the two ends of the cylinder measursed in quarter-revolutions.
This equation matisfies the oingle boundary condition w = 0.
With this deflection function, the functlons V and . W =zll
vanish except

Vi = cos (P%E- + gz) - cos [:.(E__"'_LE_L@ + %l] ' (22)
: r

‘Use of equa'bions (5),. (21), and (22) and the relation 2\ =
results in the following equation: ,

" 212 2p4
kg = 8_?—_-(;4, 5 P2 + —% %—) :l + - l_pgljzg <%)2-
+ [(p +2)2 4 j_é_(%)z;le . H (P . 2?22(9;-(2;; J (23)
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This equation may be written

8 el 12720}

4 Zt 2
ky = = 1 et I
= 8(p + 1) ( R !/'l - He‘) " (pe L X 7t 2

-
™ l-—’ué

: 4
+|‘<p+2)2+_h_ zt 1278(p + 2)
L

2
—— | 4+
“ngl"'ue] alt [(p+2)2+-£‘-—-—-——5—t—-—]2
t

2:L"I/l--g.:.2

24y

For given values of Z -end %Vl - u2, p is varied until a

mipimum value of kg ie obtained from & plot of p- and corresponding
values of kg. The critical stress of a long slender cylinder is
very insensitive to edge restraint; therefore, the solution epplies
with sufficient accuracy to cylinders with either simply supported

or clemped edges. The shear-stress coefficient for long slender
cylinders is plotted egainst the curvature parameter in figure k,

and parte of these curves also appear in figure 1.



NACA TN No. 13uk i9

REFERENCES

Donnell, L. H.: Stability of Thin-Walled Tubes under Torsion.
NACA Rep. No. 479, 1933. o

Batdorf, S. B.: A Simplified Method of BElastic~Stability
Analysis for Thin Cylindrical Shells. I - Donnell'ls
Equation. NACA TN No. 1341, 1947.

Batdorf, S. B.: A Simplified Method of Elagtic-Stability
Analysis for Thin Cylindricel Shells. ITI — Modified
Equilibrium Equetion. NACA TN No. 1342, 1947,

Leggett, D. M. A.: The Initial Buckling of Slightly Curved .
Panels under Combined Shear and Compression. R. & M. No. 1972,
British A.R.C., 19L43.

Lundquist, Eugens E.: Strength Tests on Thin-Walled Duralumin
Cylinders in Torsion. NACA TN No. 427, 1932.

Moors, R. L., and Wescoat, C.: Torsion Tests of Stiffened
Circuler Cylinders. NACA ARR No. LE31, 19uk.

Bridget, . J., Jeroms, C. C., and Vosseller, A. B.: Some
New Experiments on Buckling of Thin-Wall Congtruction.
Trang. A.S.M.E., APM-56-6, vol. 55, no. 8, Aug. 193k,
pp. 559-57€.

Moors, R. L., and Paul, D. A.: Torsicvnal Stability of
Aluminum Alloy Seamless Tubing. NACA TN No. 696, 1939.

Duncan, W. J.: The Principles of the Galerkin Method.
R. & M. No. 1848, British A.R.C., 1938.



NACA TN No. 134b

TABLE 1

THEORETICAL SHEAR-STRESS COEFFICIENTS AND WAVE LENGTHS

OF BUCKLES FOR SHORT— AND MEDIUM~LENGTH CYLINDERS

First approximation

Second approximation

Third epproximstion

Z
B kg B kg B
Cylinders with simply supported edges
0 0.770 5.34 0.790 | == = = o e = - =
1 .805 5.42 .860 5.4 0.865
5 1.00 6.22 1.015 } m = e e - -
10 1.24 7.55 1.265 7.545, 1.27
30 1.82 12.69 1.875 - e e
100 2.74 27.86 2.9 | mmm e =~
300 3.86 62.47 4.18 61.47 4.32
1,000 5.40 153.0 595 = === — e =
10,000 10.0 871.2 11.2 851.9 11.8
100,000 17.9 ko220 20.1 4800 23.0
Cylinders with clamped edges
0 1.175 9.31 1.205 9.09 1.205
1 1.18 9.32 1.2, e m e - — -
5 1.23 9.62 1,27 e e e -
10 1.35 10.42 1.38 10.19 1.38
30 1.89 14.99 1.97 e — - - =
100 2.95 30.68 3.1k4 30.65 3.12
1,000 6.12 167.5 6.70 165.7 7.00
10,000 20.85 54hg 23.2 5310 24.8

NATTONAL ADVISORY

COMMITTEE FOR AERONAUTICS
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TABLE

2

THECRETICAL SHEAR-STRESS COEFFICIENTS

FCR IONG CYLINDERS

£ Vl — ue z L
[ 4 x 103 428
3 x 10k 2,450
20 <
102 7,780
106 76,500
\.
[ 2.5 x 10* 1,680
109 ' 5,380
50 < 6
10 47,900
107 176,000
h
i 10° 4,800
100 -j 10° 35,200
107 334,500
[ .

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS
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Figure 1.~ Critical shear-stress coefficients for thin-walled cylinders
in torsion.
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Figure 2.- Comparison of theoretical curves for critical stress of
thin-walled cylinders in torsion.
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Figure 3.~ Comparison of theoretical solutions for critical stress of
simply supported cylinders in torsion with test data.
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Figure b.- Successive approximations of critical shear-stress
coefficients for thin~walled cylinders in torsion.



